[imath](x+3)^2(x^2+6x+1)=9 \\
\Leftrightarrow (x+3)^2(x^2+6x+9-9+1)=9 \\
\Leftrightarrow (x+3)^2[(x+3)^2-8]=9[/imath]
Đặt [imath]t=(x+3)^2 \ (t \geq 0)[/imath]
Ta có phương trình [imath]t(t-8)=9[/imath]
[imath]\Leftrightarrow t^2-8t-9=0 \\
\Leftrightarrow
\left[\begin{matrix}
t=-1 \ \ (loai) \\
t=9 \ \ (nhan)
\end{matrix}\right.
[/imath]
[imath]t=9[/imath] ta có: [imath](x+3)^2=9 \\
\Leftrightarrow x^2+6x=0 \\
\Leftrightarrow
\left[\begin{matrix}
x=0 \\
x=-6
\end{matrix}\right.
[/imath]