Ta có [tex]\frac{1}{\sqrt{x-4}}+\frac{1}{\sqrt{y-2}}+\frac{441}{\sqrt{z-1577}}=46-\sqrt{x-4}-\sqrt{y-2}-\sqrt{z-1577}[/tex]
[tex]<=>\frac{1}{\sqrt{x-4}}+\sqrt{x-4}+\frac{1}{\sqrt{y-2}}+\sqrt{y-2}+\frac{441}{\sqrt{z-1577}}+\sqrt{z-1577}=46[/tex]
Áp dụng BĐT [tex]a+\frac{1}{a}\geq 2[/tex]
Ta có:[tex]\frac{1}{\sqrt{x-4}}+\sqrt{x-4}\geq 2[/tex] (Dấu "="<=>x-4=1<=>x=5)(1)
[tex]\frac{1}{\sqrt{y-2}}+\sqrt{y-2}\geq 2[/tex] (Dấu '='<=>y=3)(2)
[tex]\frac{441}{\sqrt{z-1577}}+\sqrt{z-1577}\geq 2\sqrt{\frac{441}{\sqrt{z-1577}}.\sqrt{z-1577}}=2\sqrt{441}=2.21=42[/tex] (3) (Dùng BĐT Cauchy)
Từ (1),(2),(3)[tex]=>VT\geq VP=46[/tex]
Mà [tex]VT=VP[/tex]
=>[tex]\left\{\begin{matrix} x=5 & & \\ y=3& & \\ z=2018& & \end{matrix}\right.[/tex]
Vậy ...................................................................................................................