tìm x để P= [tex]\frac{2\sqrt{x}}{x-\sqrt{x}+1}[/tex] nguyên
ĐK: $x\geq 0$.
Nếu $x=0\Rightarrow P=0$
Nếu $x\neq 0\Rightarrow P=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}\leq \dfrac{2}{2-1}=2$.
Lại có: $P\geq 0\Rightarrow P\in \left\{ 0;1;2 \right \}$
$+P=0\Rightarrow x=0$ (TM)
$+P=1\Rightarrow x=\dfrac{7\pm 3\sqrt 5}2$ (TM)
$+P=2\Rightarrow x=1$ (TM)
Vậy...