$\dfrac{x-49}{50} + \dfrac{x-50}{49} =\dfrac{50}{x-49} + \dfrac{49}{x-50} \\ \Longrightarrow \dfrac{49(x-49)}{49.50} + \dfrac{50(x-50)}{49.50} =\dfrac{50(x-50)}{(x-49)(x-50)} + \dfrac{49(x-49)}{(x-50)(x-49)} \\ \Longrightarrow \dfrac{49x - 49^2 + 50x - 50^2}{50 . 49} =\dfrac{50x - 50^2 + 49x - 49^2}{x^2 - 49x - 50x + 49.50} \\ \Longrightarrow \dfrac{49(x-49)}{49.50} + \dfrac{50(x-50)}{49.50} =\dfrac{50(x-50)}{x-49(x-50)} + \dfrac{49(x-49)}{x-50(x-49)} \\ \Longrightarrow\dfrac{49x - 49^2 + 50x - 50^2}{50 . 49}=\dfrac{50x - 50^2 + 49x - 49^2}{x^2 - 49x - 50x + 49.50} $
vì $49x - 49^2 + 50x - 50^2 = 50x - 50^2 + 49x - 49^2 \\ \Longrightarrow 50.49 = x^2 - 49x - 50x + 49.50 \\ \Longrightarrow 50.49-49.50= x^2 - 99x = x(x-99)=0$
$\Longrightarrow \left[ \begin{array}{ll} x=0 \\ x-99=0 \Longrightarrow x=99 \end{array} \right.$
Chú ý đánh latex. Xem thêm tại đây.
Ps: Đã sửa!