Tìm toạ độ các điểm của hình thang

H

huytrungnghia099

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Bài 1

Cho hình thang vuông ABCD vuông tại A(1;1) và B. Trên AB lấy M sao cho BM=2AM. N(1;4) là hình chiếu vuông góc của M trên CD. Tìm tọa độ các đỉnh B,C,D biết CM vuông góc với DM và B thuộc d : x+y-2=0

Mong các bạn giúp mình nhé!
 
Last edited by a moderator:
E

eye_smile

Chứng minh được tam giác ANB vuông tại N

B thuộc d: x+y-2=0 \Rightarrow $B(b;2-b)$

$\vec AN. \vec BN=0$

\Leftrightarrow $0(1-b)+3(4-2+b)=0$

\Leftrightarrow $2+b=0$

\Leftrightarrow $b=-2$

\Rightarrow B(-2;4)

Dễ thấy A thuộc d nên AB trùng với d

\Rightarrow M thuộc d mà BM=2AM \Rightarrow M(0;2)

-AD đi qua A(1;1) vuông góc với đt d:x+y-2=0 \Rightarrow viết đc pt AD

-BC đi qua B(-2;4) vuông góc với đt: x+y-2=0 \Rightarrow viết đc pt BC

-DC đi qua N(1;4) vuông góc với $\vec MN(1;2)$ \Rightarrow viết đc pt DC

\Rightarrow Tìm đc tọa độ các điểm.
 
H

huytrungnghia099

Chứng minh được tam giác ANB vuông tại N

B thuộc d: x+y-2=0 \Rightarrow $B(b;2-b)$

$\vec AN. \vec BN=0$

\Leftrightarrow $0(1-b)+3(4-2+b)=0$

\Leftrightarrow $2+b=0$

\Leftrightarrow $b=-2$

\Rightarrow B(-2;4)

Dễ thấy A thuộc d nên AB trùng với d

\Rightarrow M thuộc d mà BM=2AM \Rightarrow M(0;2)

-AD đi qua A(1;1) vuông góc với đt d:x+y-2=0 \Rightarrow viết đc pt AD

-BC đi qua B(-2;4) vuông góc với đt: x+y-2=0 \Rightarrow viết đc pt BC

-DC đi qua N(1;4) vuông góc với $\vec MN(1;2)$ \Rightarrow viết đc pt DC

\Rightarrow Tìm đc tọa độ các điểm.

chứng minh tam giác ANB vuông kiểu gì ạ mong bạn nói rõ tí
 
L

lp_qt

$♦BMNC$ nội tiếp \Rightarrow $\widehat{BNC}=\widehat{BMC}$

Tương tự $\widehat{ADM}=\widehat{ANM}$

mà:


$\widehat{ADM}=\widehat{BMC}(=90^{\circ}-\widehat{AMD})$

\Rightarrow $\widehat{BNC}=\widehat{ANM}$

\Rightarrow $\widehat{ANB}=\widehat{MNC}=90^{\circ}$

\Rightarrow $\Delta ANB$ vuông tại N
 
H

huytrungnghia099

$♦BMNC$ nội tiếp \Rightarrow $\widehat{BNC}=\widehat{BMC}$

Tương tự $\widehat{ADM}=\widehat{ANM}$

mà:


$\widehat{ADM}=\widehat{BMC}(=90^{\circ}-\widehat{AMD})$

\Rightarrow $\widehat{BNC}=\widehat{ANM}$

\Rightarrow $\widehat{ANB}=\widehat{MNC}=90^{\circ}$

\Rightarrow $\Delta ANB$ vuông tại N

Xin lỗi mình hỏi ngu tí c/m BMNC nội tiếp kiểu gì vậy? :(:(
 
E

eye_smile

Tứ giác BMNC nội tiếp do B và N cùng nhìn cạnh CM dưới góc 90 độ

\Rightarrow 4 điểm B;M;N;C cùng thuộc đường tròn đường kính CM.

 
Top Bottom