Cuối cùng cũng giải được...
Bài 1:
Ta có:
[tex]\inline \underset{IM}{\rightarrow} - 3 \underset{IN}{\rightarrow} <=> \underset{AM}{\rightarrow} - \underset{AI}{\rightarrow}= -3\underset{AN}{\rightarrow}+3\underset{AI}{\rightarrow} <=> 4\underset{AI}{\rightarrow}= \underset{AM}{\rightarrow}+3\underset{AN}{\rightarrow} <=> 4\underset{AI}{\rightarrow}= \frac{3}{5}\underset{AB}{\rightarrow}+\frac{3}{4}\underset{AC}{\rightarrow} <=> \underset{AI}{\rightarrow}= \frac{3}{20}\underset{AB}{\rightarrow}+ \frac{3}{16}\underset{AC}{\rightarrow} (1)[/tex]
Ta cũng có:
[tex]\underset{BP}{\rightarrow}= \frac{5}{9}\underset{BC}{\rightarrow} <=> \underset{AP}{\rightarrow} - \underset{AB}{\rightarrow}= \frac{5}{9}(\underset{AC}{\rightarrow}-\underset{AB}{\rightarrow}) <=> \underset{AP}{\rightarrow} = \frac{4}{9}\underset{AB}{\rightarrow}+\frac{5}{9}\underset{AC}{\rightarrow} (2)[/tex]
Từ (1) và (2) suy ra:
[tex]\underset{AI}{\rightarrow}=\frac{27}{80}(\frac{4}{9}\underset{AB}{\rightarrow}+\frac{5}{9}\underset{AC}{\rightarrow}) <=> \underset{AI}{\rightarrow}= \frac{27}{80}\underset{AP}{\rightarrow}[/tex]
Vậy A, I, P thẳng hàng.
Bài 2:
a) Ta có:
[tex]\underset{MA}{\rightarrow} + 3\underset{MB}{\rightarrow} = \underset{MN}{\rightarrow}+\underset{NA}{\rightarrow}+3\underset{MN}{\rightarrow}+3\underset{NB}{\rightarrow}=4\underset{MN}{\rightarrow}+\underset{NA}{\rightarrow}+3\underset{NB}{\rightarrow}[/tex]
Ta xác định điểm N sao cho
[tex]\underset{NA}{\rightarrow}+3\underset{NB}{\rightarrow}= \underset{0}{\rightarrow}[/tex]
[tex]\underset{NA}{\rightarrow}+3\underset{NB}{\rightarrow}=\underset{0}{\rightarrow}<=> \underset{NA}{\rightarrow}=-3\underset{NB}{\rightarrow}[/tex]
=> N là điểm thuộc AB sao cho NA = 3NB
Khi đó:
[tex]\left | \underset{MA}{\rightarrow}+3\underset{MB}{\rightarrow} \right |= 8 <=> \left | 4\underset{MN}{\rightarrow} \right |= 8 <=> MN = 2[/tex]
Vậy tập hợp điểm M là đường tròn tâm N, bán kính 2