Toán 12 Tìm số nghiệm của phương trình $\log_3(9-\sqrt{x-1})=\log_2(x^2-2x+5)$

Bùi Tấn Phát

Học sinh chăm học
Thành viên
4 Tháng mười một 2021
126
267
51
21
An Giang
tìm số nghiệm của phương trình $log_3(9-\sqrt{x-1})=log_2(x^2-2x+5)$
ĐK: $\begin{cases}9-\sqrt{x-1}>0\\x^2-2x+5>0\\x-1\ge0\end{cases}\Leftrightarrow 1\le x<82$

$VT=\log_3(9-\sqrt{x-1})\le\log_39=2$

$VP=\log_2(x^2-2x+5)=\log_2[(x-1)^2+4]\ge\log_24=2$

Suy ra $VT\le VP$

Dấu bằng xảy ra khi $\begin{cases}x-1=0\\\sqrt{x-1}=0\end{cases}\Leftrightarrow x=1$

Mình gửi bạn nha, chúc bạn học tốt
 
Top Bottom