bài 1:
a) [TEX]2008^2 \equiv \{484}(mod 1986)[/TEX].Áp dụng t/c [TEX]a \equiv \ a' (mod b) \Rightarrow a^c \equiv \ a'^c (mod b)[/TEX].Ta có:
\Rightarrow[TEX]2008^6 \equiv \{484}^3=113379904 \equiv \(1150)(mod 1986)[/TEX]
\Rightarrow[TEX]2008^{18} \equiv \{1150}^3=1520875000 \equiv \(172)(mod 1986)[/TEX]
\Rightarrow[TEX]2008^{54} \equiv \{172}^3=5088448\equiv \(316)(mod 1986)[/TEX]
\Rightarrow[TEX]2008^{162} \equiv \{316}^3=31554496 \equiv \(928)(mod 1986)[/TEX]
\Rightarrow[TEX]2008^{324} \equiv \{928}^2=861184 \equiv \(1246) (mod 1986)[/TEX]
Vậy số dư cua[TEX]2008^{324}[/TEX] chia 1986 dư 1246
b)[TEX]8^4=4096 \equiv \88(mod 2004)[/TEX]
[TEX]8^5=32768 \equiv \704(mod 2004)[/TEX]
[TEX]8^6=262144 \equiv \1624(mod 2004)[/TEX]
Áp dụng t/c:[TEX]a \equiv \ a' (mod x), b \equiv \ b' (mod x),c \equiv \ c' (mod x) \Rightarrow a.b.c \equiv \ a' . b'. c'(mod x)[/TEX]
\Rightarrow [TEX]8^{15} \equiv \88.704.1624=100610048 \equiv \1232(mod 2004)[/TEX]
Vậy [TEX]8^{15}[/TEX] chia 2004 dư 1232