Cho biểu thức B=7^9^99+99^11^111.Hãy tìm số dư của phép chia B cho 100
$9\equiv 1(\mod 4)\\9^{99}\equiv 1(\mod 4)$
$9^{99}=4k+1\Rightarrow 7^{9^{99}}=7^{4k+1}=7^{4k}.7$
$7^4 \equiv 1(\mod 100)\\7^{4k}\equiv 1(\mod 100)\\7^{9^{99}}=7^{4k+1}\equiv 7(\mod 100)\\$
$11\equiv -1(\mod 4)\\11^{111}\equiv -1\equiv 3(\mod 4)$
$11^{111}=4k+3\Rightarrow 99^{11^{111}}=99^{4k+3}=99^{4k}.99^3$
$99 \equiv -1(\mod 100)\\99^{4k}\equiv 1(\mod 100)\\99^{11^{111}}=99^{4k+3}\equiv -1(\mod 100)$
$\Rightarrow B\equiv 6(\mod 100)$