tìm nghiệm

M

madoilinh

có ai giúp tớ với đi mà:(=((
help me................................
...................................................
 
P

phantom_lady.vs.kaito_kid

tìm k và n nguyên dương thỏa mãn
[TEX]2n({2}^{k}-1)+2n({2}^{k+1}-1)+2n({2}^{k+2}-1)=11.{2}^{k+2}[/TEX]

[TEX]\Leftrightarrow n({2}^{k}-1)+n({2}^{k+1}-1)+n({2}^{k+2}-1)=11.{2}^{k+1}[/TEX]

[TEX]\Leftrightarrow n({2}^{k}+{2}^{k+1}+{2}^{k+2}-3)=11.{2}^{k+1}[/TEX]

do [TEX] {2}^{k}+{2}^{k+1}+{2}^{k+2}-3[/TEX] lẻ nên n chia hết cho [TEX]{2}^{k+1}[/TEX]

đặt [TEX]n={2}^{k+1}.q[/TEX]

thay vào ta đc

[TEX]q(2^k+{2}^{k+1}+{2}^{k+2}-3)=11[/TEX]

[TEX]\Leftrightarrow q{2}^{k+1}(2^k+{2}^{k+1}+{2}^{k+2}-3)=11{2}^{k+1}[/TEX]

[TEX]\Rightarrow q=1, 2^k+{2}^{k+1}+{2}^{k+2}=14[/TEX]

vậy k=1, n=4

:( bài của thầy D hả
 
Last edited by a moderator:
M

madoilinh

không hiểu rõ lắm
giải thik chút đi
không phải bài thầy D
đây là phương trình của 1 bài tập môn sinh
ta không biết lí luận lắm
nói rõ khoản lí luận dùm ta đi:)|
 
T

thienlong_cuong

không hiểu rõ lắm
giải thik chút đi
không phải bài thầy D
đây là phương trình của 1 bài tập môn sinh
ta không biết lí luận lắm
nói rõ khoản lí luận dùm ta đi:)|


[TEX]q(2^k+{2}^{k+1}+{2}^{k+2}-3)=11[/TEX]

hề ! Cái thằng này lẻ nè [TEX]2^k+{2}^{k+1}+{2}^{k+2}-3[/TEX] nên nó bằng 11
/:) Học môn Sinh sao mà gớm thế ! Chơi cả kiểu PT này !
p/s : :)| thảm nào mình *** Sinh !?
 
M

madoilinh

[TEX]\Leftrightarrow n({2}^{k}-1)+n({2}^{k+1}-1)+n({2}^{k+2}-1)=11.{2}^{k+1}[/TEX]

[TEX]\Leftrightarrow n({2}^{k}+{2}^{k+1}+{2}^{k+2}-3)=11.{2}^{k+1}[/TEX]

do [TEX] {2}^{k}+{2}^{k+1}+{2}^{k+2}-3[/TEX] lẻ nên n chia hết cho [TEX]{2}^{k+1}[/TEX]

đặt [TEX]n={2}^{k+1}.q[/TEX]

thay vào ta đc

[TEX]q(2^k+{2}^{k+1}+{2}^{k+2}-3)=11[/TEX]

[TEX]\Leftrightarrow q{2}^{k+1}(2^k+{2}^{k+1}+{2}^{k+2}-3)=11{2}^{k+1}[/TEX]

[TEX]\Rightarrow q=1, 2^k+{2}^{k+1}+{2}^{k+2}=14[/TEX]

vậy k=1, n=4

:( bài của thầy D hả

chỉ cần thế thôi hả mày
không cần lí luận gì hả
..............................................
 
T

ththbode

Cho tao hỏi lại cái này
"bài sinh này của bà Sen hay ông Trường mà ... vậy ta";;;;;;
 
Top Bottom