Toán TÌM MIN

Lạp Hộ

Học sinh chăm học
Thành viên
28 Tháng ba 2015
55
16
86
22
Phú Yên
THPT chuyên Lương Văn Chánh

Nguyễn Xuân Hiếu

Cựu Mod Toán | Nhất đồng đội Mùa hè Hóa học
Thành viên
23 Tháng bảy 2016
1,123
1,495
344
22
Đắk Nông
Ta có: $P=\sum \dfrac{1}{x(\dfrac{1}{y^2}+\dfrac{1}{z^2})}$

Đặt:$(\dfrac{1}{x}; \dfrac{1}{y};\dfrac{1}{z})=(a,b,c)$

Khi đó: $P=\sum \dfrac{a}{b^2+c^2}=\sum \dfrac{a}{3-a^2}$

Ta chứng minh: $\dfrac{x}{3-x^2} \geqslant \dfrac{1}{2}x^2$

$\iff \dfrac{(x-1)^2.x.(x+2)}{2.(3-x^2)} \geqslant 0$ (BĐT này luôn đúng)

Do đó: $ P\geqslant \dfrac{1}{2} (a^2+b^2+c^2)=\dfrac{3}{2}$

Dấu "=" xảy ra: $\iff x=y=z=1 \square$
Theo lời giải của bạn @Hoàng Quốc Khánh
 
  • Like
Reactions: W_Echo74
Top Bottom