Tìm Min!!^^

T

tuananh8

Tìm Q Min:
Q=[TEX]\frac{1}{2}[/TEX][TEX](\frac{x^{10}}{y^2}[/TEX][TEX]+[/TEX][TEX]\frac{y^{10}}{x^2})[/TEX] [TEX]+[/TEX] [TEX]\frac{1}{4}[/TEX][TEX](x^{16}+y^{16})[/TEX]- [TEX](1+x^2y^2)^2[/TEX]

có: [TEX]Q=[/TEX][TEX]\frac{1}{2}[/TEX][TEX](\frac{x^{10}}{y^2}[/TEX][TEX]+[/TEX][TEX]\frac{y^{10}}{x^2})[/TEX] [TEX]+[/TEX] [TEX]\frac{1}{4}[/TEX][TEX](x^{16}+y^{16})[/TEX]- [TEX](1+x^2y^2)^2[/TEX]

[TEX]= \frac{1}{2}(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}+1+1)+ \frac{1}{4}(x^{16}+y^{16}+1+1)-1-\frac{1}{2} - 1-2x^2y^2-x^4y^4[/TEX]

Cô-si 4 số: [TEX] Q \geq \frac{1}{2}(4\sqrt[4]{\frac{x^{10}y^{10}}{x^2y^2}}) + \frac{1}{4}(4\sqrt[4]{x^{16}y^{16}}) - x^4y^4-2x^2y^2 - \frac{5}{2}[/TEX]

[TEX]= \frac{1}{2}(4x^2y^2) + \frac{1}{4}(4x^4y^4) -2x^2y^2-x^4y^4- \frac{5}{2}[/TEX]

[TEX]=2x^2y^2+x^4y^4-2x^2y^2-x^4y^4- \frac{5}{2} = \frac{-5}{2}[/TEX]

Vậy [TEX]Min_{Q}= \frac{-5}{2} \Leftrightarrow x^2=y^2=1[/TEX]
 
Top Bottom