tìm min

S

son9701

cho 2 số thực dương x,y thoả mãn [TEX]x^2+y^2+xy=3[/TEX]
tìm min A= [TEX]\frac{x}{y+1}+\frac{y}{x+1}[/TEX]

Ta có: [TEX]x^2+y^2+xy=3 \Rightarrow x^2+y^2=3-xy (1) \Rightarrow (x-y)^2= 3-3xy \Rightarrow 3-3xy \geq 0 \Rightarrow xy \leq 1[/TEX]
Mặt khác, A=[tex]\frac{x^2+y^2+x+y}{(x+1)(y+1)}=\frac{3-xy+x+y}{(x+1)(y+1)}=\frac{2-2xy+ xy+x+y+1}{(x+1)(y+1)}=1+\frac{2-2xy}{(x+1)(y+1)} \geq 1[/tex] (do xy [tex]\leq 1[/tex](cmt))
Vậy min A=1 <-> x=y=1
 
Top Bottom