Tìm Min

N

niemkieuloveahbu

[TEX]\blue{Ta\ co:\\ xy+yz+zx=xyz(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}) \geq xyz.\frac{9}{x+y+z}=9xyz\\ \Rightarrow \frac{1}{xyz}\geq \frac{9}{xy+yz+zx}\\ Dau\ = \Leftrightarrow x=y=z=\frac{1}{3}[/TEX]

[TEX]\blue{T\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\\ Dau\ = \Leftrightarrow x=y=z=\frac{1}{3}\\ Ta\ co:\\ \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}= \frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx} +\frac{1}{xy+yz+zx}+\frac{7}{xy+yz+zx}[/TEX]


[TEX]\blue{Ap \ dung\ C-S:\\\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx} +\frac{1}{xy+yz+zx}\geq \frac{(1+1+1)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\\ \Leftrightarrow P\geq \frac{9}{(x+y+z)^2}+\frac{7}{xy+yz+zx}=9+\frac{7}{xy+yz+zx}\\ Dau\ = \Leftrightarrow x=y=z\\ Ma:\\ 1=(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx) \Rightarrow xy+yz+zx \leq \frac{1}{3} \Rightarrow \frac{7}{xy+yz+zx} \geq 21.\\ Dau\ = \Leftrightarrow x=y=z=\frac{1}{3}\\ \Rightarrow P \geq 30[/TEX]

[TEX]\blue{Vay\ min P= 30 \Leftrightarrow x=y=z=\frac{1}{3} [/TEX]
 
D

duynhan1

[TEX]A= \frac{1}{x^2+y^2+z^2} + \frac{x+y+z}{xyz} = \frac{1}{x^2+y^2+z^2} + \frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx} \ge \frac{1}{x^2+y^2+z^2} + \frac{9}{xy+yz+zx} = B[/TEX]
Cách 1:
Đặt [TEX]t = xy + yz + zx \le \frac13(x+y+z)^2 (*) = \frac13[/TEX], khi đó ta có:
[tex] P = \frac{1}{1-2t} + \frac{9}{t} [/tex]
Khảo sát hàm số là ra :D
Cách 2:
Như niemkieuloveahbu đã làm.

Chứng minh (*):
Ta có :
[tex] (x-y)^2 + (y-z)^2 + (z-x)^2 \ge 0 \\ \Leftrightarrow x^2 + y^2 + z^2 \ge xy + yz + zx \\ \Leftrightarrow x^2 + y^2 + z^2 + 2(xy + yz + zx) \ge 3(xy + yz + zx) \Leftrightarrow (x+y+z)^2 \ge 3(xy + yz + zx) [/tex]
 
Last edited by a moderator:
Top Bottom