tim min

0

0915549009

cho x+y=1(x,y >0)
tim Min A= (x^2+1/(y^2))*(y^2+1/(x^2))
Không hiểu đề, viết tex đi bạn. Mình đoán đề ko bik đúng ko
[TEX]A = \frac{(x^2+1)(y^2+1)}{x^2y^2}=1+\frac{1}{x^2}+ \frac {1}{y^2}+\frac{1}{x^2y^2} \geq 1+\frac{1}{2}(\frac{1}{x}+\frac {1}{y})^2+ \frac{1}{(xy)^2}[/TEX]
[TEX]\geq 1+ \frac{8}{x+y} + 16 = 25[/TEX]
 
K

khanhtoan_qb

cho x+y=1(x,y >0)
tim Min A= (x^2+1/(y^2))*(y^2+1/(x^2))
Thử coi nghen:
Ta có:
[TEX]A = \frac{x^2 + 1}{y^2} . \frac{y^2 + 1}{x^2} \geq \frac{2x}{y^2} . \frac{2y}{x^2} = \frac{4}{xy}[/TEX]
Lại có [TEX]x + y = 1\Rightarrow x^2 + 2xy + y^2 = 1 \Rightarrow 4xy \leq 1 \Rightarrow xy \leq \frac{1}{4}[/TEX]
\Rightarrow [TEX]A \geq \frac{4}{xy} \geq \frac{4}{\frac{1}{4}} = 16[/TEX]
\Rightarrow [TEX]A_{min} = 16 \Leftrightarrow x = y = 0,5[/TEX] :):)
 
T

tuyn

cho x+y=1(x,y >0)
tim Min A= (x^2+1/(y^2))*(y^2+1/(x^2))
[TEX]A=\frac{x^2y^2+x^2+y^2+1}{x^2y^2}=1+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2y^2} \geq 1+\frac{2}{xy}+\frac{1}{x^2y^2}=(1+\frac{1}{xy})^2[/TEX]
[TEX]1=x+y \geq 2\sqrt{xy} \Rightarrow xy \leq \frac{1}{4} \Rightarrow \frac{1}{xy} \geq 4[/TEX]
[TEX]A \geq (1+4)^2=25[/TEX]
 
0

0915549009

Thử coi nghen:
Ta có:
[TEX]A = \frac{x^2 + 1}{y^2} . \frac{y^2 + 1}{x^2} \geq \frac{2x}{y^2} . \frac{2y}{x^2} = \frac{4}{xy}[/TEX]
Lại có [TEX]x + y = 1\Rightarrow x^2 + 2xy + y^2 = 1 \Rightarrow 4xy \leq 1 \Rightarrow xy \leq \frac{1}{4}[/TEX]
\Rightarrow [TEX]A \geq \frac{4}{xy} \geq \frac{4}{\frac{1}{4}} = 16[/TEX]
\Rightarrow [TEX]A_{min} = 16 \Leftrightarrow x = y = 0,5[/TEX] :):)
Dấu "=" để : [TEX]A = \frac{x^2 + 1}{y^2} . \frac{y^2 + 1}{x^2} \geq \frac{2x}{y^2} . \frac{2y}{x^2}[/TEX] là [TEX]x^2=1=y^2 \Rightarrow x=y=1 \Rightarrow Sai[/TEX]
 
T

tumonobeo

de la the nay: cho x+y=1 (x,y >0).tim min [TEX]A=({x}^{2}+\frac{1}{{y}^{2}})*({y}^{2}+\frac{1}{{x}^{2}})[/TEX]
 
T

tuyn

de la the nay: cho x+y=1 (x,y >0).tim min [TEX]A=({x}^{2}+\frac{1}{{y}^{2}})*({y}^{2}+\frac{1}{{x}^{2}})[/TEX]
[TEX]A=2+x^2y^2+\frac{1}{x^2y^2} =2+(x^2y^2+\frac{1}{256x^2y^2})+\frac{255}{256x^2y^2} \geq 2+\frac{1}{8}+\frac{255}{256x^2y^2}[/TEX]
[TEX]1=x+y \geq 2\sqrt{xy} \Rightarrow xy \leq \frac{1}{4} \Rightarrow \frac{1}{x^2y^2} \geq 16[/TEX]
[TEX]A \geq 2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}[/TEX]
 
Top Bottom