tìm Min,Max

H

hien_vuthithanh

1) $$y=\sqrt{1-sin^2x}-1$$

Có : $$0 \le sin^2x \le 1 \iff 1 \ge 1-sin^2x \ge 0$$

$$\Longrightarrow 0 \ge y=\sqrt{1-sin^2x}-1 \ge -1$$

Vậy $min =-1$ tại $sinx=1$ ,$max=0$ tại $sinx=0$
 
L

lp_qt

2)$y=cosx+cos(x-\dfrac{\pi}{3})=\cos x+(\dfrac{1}{2}.\cos x+\dfrac{\sqrt{3}}{2}\sin x)=\dfrac{3}{2}.\cos x+\dfrac{\sqrt{3}}{2}\sin x$

$ \Longrightarrow y^2 \le (\dfrac{9}{4}+\dfrac{3}{4})(\sin^2 x+\cos^2 x)=3$

$\Longrightarrow -\sqrt{3} \le y \le \sqrt{3}$
 
Top Bottom