a/ $\bigstar \mathfrak{GTNN}$
$A=\dfrac{2(x+1)^2}{x^4+1} \ge 0$
Dấu "=" xảy ra khi $x=-1$
$\bigstar \mathfrak{GTLN}$
Hơi lẻ
b/ $\bigstar \mathfrak{GTNN}$
$B=\dfrac{x^4+9}{x^2+3)^2}$
$\iff B = \dfrac{x^4+9}{x^4+6x^2+9}$
$\iff B \ge \dfrac{x^4+9}{x^4+x^4+9+9}$ (bđt Cauchy)
$\iff B \ge \dfrac{1}{2}$
Dấu "=" xảy ra khi $x^4=9 \iff x=\pm \sqrt{3}$
$\bigstar \mathfrak{GTLN}$
$B=\dfrac{x^4+9}{x^2+3)^2}$
$\iff B = \dfrac{x^4+6x^2+9-6x^2}{(x^2+3)^2}$
$\iff B = \dfrac{(x^2+3)^2}{(x^2+3)^2}-\dfrac{6x^2}{(x^2+2)^2}$
$\iff B =1-\dfrac{6x^2}{(x^2+2)^2}$
$\iff B \le 1$
Dấu "=" xảy ra khi $x=0$
c/ $\bigstar \mathfrak{GTNN}$
$C=\dfrac{4x+1}{4x^2+2}$
$\iff C=\dfrac{2x^2+4x+2}{4x^2+2}+\dfrac{-2x^2-1}{4x^2+2}$
$\iff C=\dfrac{2(x+1)^2}{4x^2+2}-\dfrac{1}{2}$
$\iff C \ge \dfrac{-1}{2}$
Dấu '=" xảy ra khi $x+1=0 \iff x=-1$
$\bigstar \mathfrak{GTLN}$
$C=\dfrac{4x+1}{4x^2+2}$
$\iff C=\dfrac{4x^2+2}{4x^2+2}-\dfrac{4x^2-4x+1}{4x^2+2}$
$\iff C=1-\dfrac{(2x-1)^2}{4x^2+2}$
$\iff C \le 1$
Dấu "=" xảy ra khi $2x-1=0 \iff x=\dfrac{1}{2}$