Tìm Min,Max

T

transformers123

a/ $\bigstar \mathfrak{GTNN}$

$A=\dfrac{2(x+1)^2}{x^4+1} \ge 0$

Dấu "=" xảy ra khi $x=-1$

$\bigstar \mathfrak{GTLN}$

Hơi lẻ

b/ $\bigstar \mathfrak{GTNN}$

$B=\dfrac{x^4+9}{x^2+3)^2}$

$\iff B = \dfrac{x^4+9}{x^4+6x^2+9}$

$\iff B \ge \dfrac{x^4+9}{x^4+x^4+9+9}$ (bđt Cauchy)

$\iff B \ge \dfrac{1}{2}$

Dấu "=" xảy ra khi $x^4=9 \iff x=\pm \sqrt{3}$

$\bigstar \mathfrak{GTLN}$

$B=\dfrac{x^4+9}{x^2+3)^2}$

$\iff B = \dfrac{x^4+6x^2+9-6x^2}{(x^2+3)^2}$

$\iff B = \dfrac{(x^2+3)^2}{(x^2+3)^2}-\dfrac{6x^2}{(x^2+2)^2}$

$\iff B =1-\dfrac{6x^2}{(x^2+2)^2}$

$\iff B \le 1$

Dấu "=" xảy ra khi $x=0$

c/ $\bigstar \mathfrak{GTNN}$

$C=\dfrac{4x+1}{4x^2+2}$

$\iff C=\dfrac{2x^2+4x+2}{4x^2+2}+\dfrac{-2x^2-1}{4x^2+2}$

$\iff C=\dfrac{2(x+1)^2}{4x^2+2}-\dfrac{1}{2}$

$\iff C \ge \dfrac{-1}{2}$

Dấu '=" xảy ra khi $x+1=0 \iff x=-1$

$\bigstar \mathfrak{GTLN}$

$C=\dfrac{4x+1}{4x^2+2}$

$\iff C=\dfrac{4x^2+2}{4x^2+2}-\dfrac{4x^2-4x+1}{4x^2+2}$

$\iff C=1-\dfrac{(2x-1)^2}{4x^2+2}$

$\iff C \le 1$

Dấu "=" xảy ra khi $2x-1=0 \iff x=\dfrac{1}{2}$
 
Top Bottom