Tìm min,max

E

eye_smile

Có;

$A=\sqrt[3]{a^2+\dfrac{1}{a^2}}+\sqrt[3]{b^2+\dfrac{1}{b^2}} \ge 2\sqrt[6]{(a^2+\dfrac{1}{a^2})(b^2+\dfrac{1}{b^2})}=2\sqrt[6]{a^2b^2+\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+\dfrac{1}{(ab)^2}}$

Có: $\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2} \ge 2 $

$a^2b^2+\dfrac{1}{256(ab)^2} \ge 2.\dfrac{1}{16}=\dfrac{1}{8}$

$\dfrac{255}{256(ab)^2} \ge \dfrac{255}{256.\dfrac{1}{4^2}}=....$

(Do $1=a+b \ge 2\sqrt{ab}$ \Leftrightarrow $ab \le \dfrac{1}{4}$)

\Rightarrow $A\ge ....$ (Tự tính nha bạn:)) )

Dấu "=" xảy ra \Leftrightarrow $a=b=1/2$
 
H

huynhbachkhoa23

Theo Minkovsky:

$A \ge \sqrt[3]{(\sqrt[3]{a^2}+\sqrt[3]{b^2})^3+(\sqrt[3]{\dfrac{1}{a^2}}+\sqrt[3]{\dfrac{1}{b^2}})^3}$

Theo Holder:

$\sqrt[3]{a^2}+\sqrt[3]{b^2} \ge \sqrt[3]{2}\sqrt[3]{(a+b)^2}=\sqrt[3]{2}$

$\sqrt[3]{\dfrac{1}{a^2}}+\sqrt[3]{\dfrac{1}{b^2}} \ge \sqrt[3]{2}\sqrt[3]{(\dfrac{1}{a}+\dfrac{1}{b})^2}\ge \sqrt[3]{2}.\sqrt[3]{\dfrac{16}{(a+b)^2}}=\sqrt[3]{32}$

Suy ra $A \ge \sqrt[3]{2+32}=\sqrt[3]{34}$

Đẳng thức xảy ra khi $a=b=\dfrac{1}{2}$
 
Last edited by a moderator:
Top Bottom