Tìm Min : $A=a.b.c$

J

janbel

Cho a,b,c $>$ 0 thỏa mãn $\frac{1}{1+a}+\frac{35}{35+2b} \le \frac{4c}{4c+57}$ . Tìm Min : $A=a.b.c$




Lời giải của lequanghung98 VMF:............................................................
$\dfrac{4c}{4c+57}\ge \dfrac{1}{1+a}+\dfrac{35}{35+2b}\ge 2\sqrt{\dfrac{35}{(1+a)(2b+35)}}> 0$
Theo giả thiết, ta có:
$\dfrac{1}{1+a}-\dfrac{4c}{4c+57}\le \dfrac{-35}{35+2b} \iff \dfrac{1}{1+a}-\dfrac{4c}{4c+57}+1\le 1-\dfrac{35}{35+2b}= \dfrac{2b}{35+2b} \iff \dfrac{2b}{2b+35}\ge \dfrac{1}{1+a}+\dfrac{57}{4c+57}\ge 2\sqrt{\dfrac{57}{(1+a)(4c+57)}}$
$1-\dfrac{1}{1+a}\ge 1-\dfrac{4c}{41+57}+\dfrac{35}{35+2b} \iff \dfrac{a}{1+a}\ge \dfrac{57}{4c+57}+\dfrac{35}{35+2b}\ge 2\sqrt{\dfrac{35.57}{(4c+57)(35+2b)}}$
$\to \dfrac{8abc}{(1+a)(4c+57)(2b+35)}\ge \dfrac{8.35.57}{(1+a)(2b+35)(4c+57)} \iff abc\ge 35.57=1995$
"=" xảy ra $\iff a=2, b=35, c=\dfrac{57}{2}$
ần phong mỹ tục.
 
Top Bottom