Ta dùng cái BĐT phụ này nhé : [tex](a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ca)[/tex]
Ta có: [tex]\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy} =\frac{x}{x(x+y+z)+yz}+\frac{y}{y(x+y+z)+xz}+\frac{z}{z(x+y+z)+xy} =\frac{x}{(x+y)(x+z)}+\frac{y}{(x+y)(y+z)}+\frac{z}{(z+y)(x+z)}=\frac{2(xy+yz+zx)}{(x+y)(y+z)(z+x)}\leq \frac{2(xy+yz+zx)}{\frac{8}{9}(x+y+z)(xy+yz+zx)}=\frac{2}{\frac{8}{9}(x+y+z)}=\frac{2}{\frac{8}{9}}=\frac{18}{8}=\frac{9}{4}[/tex]
Dấu = xảy ra khi x=y=z=1/3