Tìm Max y=$3\sqrt{2x-1}+x\sqrt{5-4x^2}$

N

nguyenbahiep1

cho y=$3\sqrt{2x-1}+x\sqrt{5-4x^2}$
tìm max y với $\dfrac{1}{2}$ \leqx\leq $\dfrac{\sqrt{5}}{2}$



theo cô si ta có :

[laTEX](2x-1) +1 \geq 2\sqrt{2x-1} \\ \\ \Rightarrow 3x \geq 3\sqrt{2x-1} \\ \\ x^2+(5-4x^2) \geq 2 \sqrt{x^2(5-4x^2)} = 2x.\sqrt{5-4x^2} \\ \\ VT \leq \frac{-3x^2+6x+5}{2} = \frac{8-3(x-1)^2}{2} \leq 4 \\ \\ Max_y = 4 \\ \\ dau-bang-xay-ra: x = 1[/laTEX]
 
Top Bottom