1/ TA có : $x^2-x+1=(x-\dfrac{1}{2})^2+\dfrac{3}{4}> 0$ \forallx
$A=\dfrac{x^2+x+1}{x^2-x+1}=\dfrac{3(x^2-x+1)-2x^2+4x-2}{x^2-x+1}$
$=3-\dfrac{2(x^2-2x+1)}{x^2-x+1}=3-\dfrac{2(x-1)^2}{x^2-x+1}$
\Rightarrow Max A là 3 khi x=1
Lại có:
$A=\dfrac{x^2+x+1}{x^2-x+1}=\dfrac{3(x^2+x+1)}{3(x^2-x+1)}$
$=\dfrac{(x^2-x+1)+(2x^2+4x+2)}{x^2-x+1}$
$=\dfrac{1}{3}+\dfrac{2(x+1)^2}{x^2-x+1}$
\RightarrowMin $A=\dfrac{1}{3}$ khi x=-1