Tìm MAX ,MIN

B

braga

Nếu $y=0\implies x^2=1\implies A=1$
Xét $y\neq 0 \ : \ A=\dfrac{x^2-xy+2y^2}{x^2+xy+y^2} $ $=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{x}{y}+2}{\left(\dfrac{x}{y}\right)^2+\dfrac{x}{y}+1} $$=\dfrac{t^2-t+2}{t^2+t+1} \ \left(t=\dfrac{x}{y}\right)$
Gọi $m$ làd 1 giá trị của A ta có:
$$m=\dfrac{t^2-t+2}{t^2+t+1}\iff (m-1)t^2+(m+1)t+m-2=0$$
+, $m=1\implies t=\dfrac{1}{2}$
+, $m\neq 1$ Có $\Delta =(m+1)^2-4(m-1)(m-2)\ge 0\iff \dfrac{7-2\sqrt{7}}{3}\le m\le \dfrac{7+2\sqrt{7}}{3}$
 
Top Bottom