Toán 12 Tìm max,min

T

tranvanhung7997

2.cho $ a,b \ge - 1$ và $a + b = 1$.tìm Max $A = \sqrt[]{a + 1} + \sqrt[]{b + 1}$

Áp dụng BĐT Bunhia ta được:
$A^2 = ( \sqrt[]{a + 1} + \sqrt[]{b + 1})^2 \le (1 + 1)(a + 1 + b + 1) = 2.(1 + 2) = 6$
$=> A \le \sqrt[]{6}$ ( Vì $A > 0)$
Dấu = có <=> $a + b = 1$ và $\sqrt[]{a + 1} = \sqrt[]{b + 1}$
<=> $a = b = \dfrac{1}{2}$
Vậy Max $A = \sqrt[]{6}$ <=> $a = b = \dfrac{1}{2}$
 
E

eye_smile

1.Đặt $\dfrac{1}{a} = x;\dfrac{1}{b} = y;\dfrac{1}{c} = z \to xyz = 1$
$ \to P = \dfrac{{ab}}{{{c^2}a + {c^2}b}} + \dfrac{{bc}}{{{a^2}b + {a^2}c}} + \dfrac{{ca}}{{{b^2}c + {b^2}a}} = \dfrac{{ab}}{{a + b}}.\dfrac{1}{{{c^2}}} + \dfrac{{bc}}{{b + c}}.\dfrac{1}{{{a^2}}} + \dfrac{{ca}}{{c + a}}.\dfrac{1}{{{b^2}}}$
Dễ dàng CM BĐT :$\dfrac{{{z^2}}}{{x + y}} + \dfrac{{{x^2}}}{{y + z}} + \dfrac{{{y^2}}}{{z + x}} \ge \dfrac{{x + y + z}}{2}$
$ \to P = \dfrac{{{z^2}}}{{x + y}} + \dfrac{{{x^2}}}{{y + z}} + \dfrac{{{y^2}}}{{z + x}} \ge \dfrac{{x + y + z}}{2} \ge \dfrac{{3\sqrt[3]{{xyz}}}}{2} = \dfrac{3}{2}$
Dấu"=" xảy ra $ \leftrightarrow x = y = z = 1 \leftrightarrow a = b = c = 1$
 
Top Bottom