[tex]A=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ac+2b}}\\ A=\frac{ab}{\sqrt{ab+(a+b+c)c}}+\frac{bc}{\sqrt{bc+(a+b+c)a}}+\frac{ca}{\sqrt{ac+(a+b+c)b}}\\ A=\frac{ab}{\sqrt{(a+c)(b+c)}}+\frac{bc}{\sqrt{(a+c)(a+b)}}+\frac{ca}{\sqrt{(b+c)(a+b)}}[/tex]
Áp dụng BĐT AM- GM ta có:
[tex]A\leq \frac{1}{2}(\frac{ab}{b+c}+\frac{ab}{a+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{a+b})=1[/tex]
[tex]max _{A}=1\Leftrightarrow a = b=c =\frac{2}{3}[/tex]