\[\begin{align}
& m=0\Rightarrow (x;y)=(2;\frac{-1}{2}) \\
& m\ne 0\Rightarrow mx+{{m}^{2}}y=2m;mx-2y=1 \\
& \Rightarrow ({{m}^{2}}+2)y=2m-1 \\
& \Leftrightarrow y=\frac{2m-1}{{{m}^{2}}+2} \\
& \Rightarrow x=2-my=2-\frac{2{{m}^{2}}-m}{{{m}^{2}}+2}=\frac{4+m}{{{m}^{2}}+2} \\
& x>0;y<0\Rightarrow \frac{4+m}{{{m}^{2}}+2}>0;\frac{2m-1}{{{m}^{2}}+2}<0 \\
& \Rightarrow m>-4;m<\frac{1}{2} \\
& \Rightarrow -4<m<\frac{1}{2} \\
\end{align}\] và [TEX]m\ne 0[/TEX]
Vậy [TEX]-4<m<\frac{1}{2}[/TEX]