

a, Cho dãy (un): u1 = 2, [math]u_{n+1}=\frac{u_{n}^2+2022u_{n}}{2023}\forall n\geq 1[/math].
Tìm [math]lim(\frac{u_{1}}{u_{2}-1}+\frac{u_{2}}{u_{3}-1}+...+\frac{u_{n}}{u_{n+1}-1})[/math]b, Cho (un): u1= 1,
[math]u_{n+1}=\frac{u_{n}^2}{2022}+u_{n}\forall n\geq 1[/math]Tìm [math]lim(\frac{u_{1}}{u_{2}}+\frac{u_{2}}{u_{3}}+...+\frac{u_{n}}{u_{n+1}})[/math]
Tìm [math]lim(\frac{u_{1}}{u_{2}-1}+\frac{u_{2}}{u_{3}-1}+...+\frac{u_{n}}{u_{n+1}-1})[/math]b, Cho (un): u1= 1,
[math]u_{n+1}=\frac{u_{n}^2}{2022}+u_{n}\forall n\geq 1[/math]Tìm [math]lim(\frac{u_{1}}{u_{2}}+\frac{u_{2}}{u_{3}}+...+\frac{u_{n}}{u_{n+1}})[/math]