lim[tex]\sqrt{n^2+n+1}-n+n-\sqrt[3]{n^3+3n+2}=\frac{n+1}{\sqrt{n^2+n+1}+n}+\frac{-3n-2}{n^2+n\sqrt[3]{n^3+3n+2}+\sqrt[3]{(n^3+3n+2)^2}}=\frac{1+\frac{1}{n}}{\sqrt{1+\frac{1}{n}+\frac{1}{n^2}}+1}+\frac{\frac{-3}{n}-\frac{2}{n^2}}{1+\sqrt[3]{1+\frac{3}{n^2}+\frac{2}{n^3}}+\sqrt[3]{(1+\frac{3}{n^2}+\frac{2}{n^3})^2}}=\frac{1}{2}[/tex]