tìm lim của các biểu thức

H

hienzu

a. Ta có:
0 < [TEX]\frac{\sqrt{{5}^{n}}}{{3}^{n}+1}[/TEX]= [TEX]\frac{({\sqrt{5}})^{n}}{{3}^{n}+1}[/TEX]< [TEX]\frac{({\sqrt{5}})^{n}}{{3}^{n}}[/TEX]= [TEX]{(\frac{\sqrt{5}}{3}})^{n}[/TEX]
.......
\Rightarrow lim=0
c,lim[TEX]\frac{4n-2}{\sqrt[3]{1+2n+{n}^{3}}}[/TEX]
= lim [TEX]\frac{\frac{4}{{n}^{2}}-2}{\sqrt[3]{\frac{1}{{n}^{3}}+\frac{2}{{n}^{2}}+1}}[/TEX]
=-2:)
 
T

tuyn

b/ ta có [TEX] -1\leq (-1)^n \leq 1[/TEX] nên [TEX]\frac{-5}{6(n+1)} \leq \frac{3(-1)^n-2}{6(n+1)} \leq \frac{1}{6(n+1)}[/TEX]
d/ ta có [TEX]n!=2.3.4.5...n > 2.2.2^2.2^2...2^2=2^{1+1+2+2+...+2}=2^{2+2(n-4)}=2^{2n-6}[/TEX] \Rightarrow [TEX]0 < \frac{2^n}{n!} < \frac{2^n}{2^{2n-6}}=\frac{1}{2^{n-6}}[/TEX]
 
D

duynhana1

giúp mình mấy câu lim này với
[TEX]lim\frac{\sqrt[2]{5^n}}{3^n+1}[/TEX]
[TEX]lim(\frac{-1^n}{2^(n+1)}-\frac{1}{3^(n+1)})[/TEX]
[TEX]lim\frac{4n-2}{\sqrt[3]{1+2n+n^3}}[/TEX]
[TEX]lim\frac{2^n}{n!}[/TEX]
khó quá
[TEX]\huge lim\frac{\sqrt[2]{5^n}}{3^n+1} = \lim \frac{\sqrt{(\frac59)^n}}{1+ \frac{1}{3^n}} = 0 [/TEX]

[TEX]\huge lim(\frac{-1^n}{2^(n+1)}-\frac{1}{3^(n+1)}) = 0 [/TEX]

[TEX]\huge lim\frac{4n-2}{\sqrt[3]{1+2n+n^3}} = \frac{4}{\sqrt[3]{1}} = 4 [/TEX] ( chia cho n cả tử và mẫu )

[TEX]\huge lim \frac{n!}{2^n } = lim \frac12 . \frac22 . \frac32 . \frac42.\frac52....\frac{n}{2} = + \infty \Rightarrow lim \frac{2^n}{n!} = 0 [/TEX]
 
Top Bottom