Ta có: [tex]g'(x)=(2x+3)f'(x^2+3x+1)[/tex]
Ta thấy [tex]x^2+3x+1 \in (\frac{-5}{4},+\infty)[/tex]
Xét:
+ [tex]x\in(-\frac{3}{2},-1)\Rightarrow \left\{\begin{matrix} x^2+3x+1 \in (-\frac{5}{4},-1)\\ f(x^2+3x+1) >0 \forall x\in (-\frac{3}{2},-1) \end{matrix}\right.\Rightarrow f(t)>0 \forall t \in (-\frac{5}{4},-1)[/tex]
+ [tex]x \in (-1,0) \Rightarrow \left\{\begin{matrix} x^2+3x+1 \in (-1,1)\\ f(x^2+3x+1) <0 \end{matrix}\right.\Rightarrow f(t)<0 \forall t \in (-1,1)[/tex]
+ [tex]x \in (0,+\infty) \Rightarrow \left\{\begin{matrix} x^2+3x+1 \in (1,+\infty)\\ f(x^2+3x+1) >0 \end{matrix}\right.\Rightarrow f(t) > 0 \forall t \in (1,+\infty)[/tex]
Dựa vào đó ta có [TEX][f(x-1)]'=f'(x-1)[/TEX] nên D đúng.