[tex]\frac{a+b+c}{\sqrt[3]{abc}}\geq \frac{3\sqrt[3]{abc}}{\sqrt[3]{abc}}=3[/tex]
đặt [tex]t=\frac{a+b+c}{\sqrt[3]{abc}};t\geq 3[/tex]
=>[tex]T=t+\frac{1}{t}[/tex]
hàm này đồng biến nên min tại t=3 =>T=3+1/3=10/3
[tex]\frac{a+b+c}{\sqrt[3]{abc}}\geq \frac{3\sqrt[3]{abc}}{\sqrt[3]{abc}}=3[/tex]
đặt [tex]t=\frac{a+b+c}{\sqrt[3]{abc}};t\geq 3[/tex]
=>[tex]T=t+\frac{1}{t}[/tex]
hàm này đồng biến nên min tại t=3 =>T=3+1/3=10/3