tìm GTNN

S

sam_chuoi

Umbala

Cho a,b>0; a+b=2. Tìm GTNN của:
2(a+b)^2 - 6(a/b+b/a) +9[1/(a^2)+ 1/(b^2)]

$A=2(a+b)^2-6(a^2+b^2)/(ab)+9(a^2+b^2)/(ab)^2=8+3(a^2+b^2)/(ab)^2+6(a^2+b^2).(1/ab-1)/(ab)$. Ta có $a^2+b^2\ge2ab , côsi có a+b=2\ge2\sqrt[]{ab}$. Suy ra $\sqrt[ab]\le1 suy ra ab\le1 suy ra 1/(ab)\ge1$. Suy ra $A\ge8+6/(ab)\ge8+6=14$. Vậy MinA=14 khi a=b=1.
 
A

angleofdarkness

$A=8 - 6.\dfrac{a^2+b^2}{ab} + 9.\dfrac{a^2+b^2}{a^2b^2}$

$=8+3.\dfrac{a^2+b^2}{a^2b^2}+6.(a^2+b^2)$$.\dfrac{\dfrac{1}{ab}-1}{ab}$.

Ta có $a^2+b^2\ge2ab$ và $a+b=2\ge2\sqrt[]{ab}$.

\Rightarrow $\sqrt{ab}\le1$ \Rightarrow $ab\le1$
\Rightarrow $\dfrac{1}{ab}\ge1$ \Rightarrow $A\ge8+\dfrac{6}{ab}\ge8+6=14$.

Vậy MinA=14 \Leftrightarrow... \Leftrightarrow a=b=1
 
Top Bottom