Đè bài là:
Cho [TEX]x,y[/TEX] là các số thực dương thỏa mãn phương trình :
[TEX]x^3 + y^3 - 3xy(x^2 + y^2) + 4x^2y^2(x + y) - 4x^3y^3 = 0 [/TEX]
Tìm giá trị nhỏ nhất của [TEX]M = x + y[/TEX]
PT[TEX]\Leftrightarrow (x+y)^3-3xy(x+y)-3xy(x+y)^2+6x^2y^2+4x^2y^2(x + y) - 4x^3y^3=0[/TEX]
[TEX]\Leftrightarrow (x+y)^{2}(x+y-2xy)-3xy(x+y-2xy)+4x^2y^2(x+y-2xy)-xy(\left(x+y\right)^2-4x^2y^2)=0[/TEX]
[TEX]\Leftrightarrow(x+y-2xy)\left((x+y)^2-3xy+4x^2y^2-xy(x+y)-2x^2y^2 \right)=0[/TEX]
[TEX]\Leftrightarrow(x+y-2xy)\left((x+y)^2+2x^2y^2-3xy-xy(x+y)\right)=0[/TEX].
Ta thấy [TEX](x+y)^2+2x^2y^2-3xy-xy(x+y)=\frac{3(x+y)^2}{4}-3xy+\frac{(x+y)^2}{4}+x^2y^2-xy(x+y)+x^2y^2 >0[/TEX].
Do đó [TEX]x+y=2xy\le \frac{(x+y)^2}{2}\Rightarrow M=x+y\le2[/TEX].Vậy min M bằng 2 khi [TEX]x=y=1[/TEX]