Cho a,b,c>0 thỏa: [tex]a\geq 3, b\geq 4, c\geq 2[/tex]
Tìm GTLN của:
A=[tex]\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ac\sqrt{b-4}}{abc}[/tex]
[tex]A=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}[/tex]
Áp dụng BĐT Cauchy ta có:
[tex]\sqrt{c-2}=\frac{1}{\sqrt{2}}.\sqrt{(c-2).2}\leq \frac{1}{\sqrt{2}}.\frac{c-2+2}{2}= \frac{1}{\sqrt{2}}.\frac{c}{2}[/tex] [tex]\Rightarrow \frac{\sqrt{c-2}}{c}\leq \frac{1}{2\sqrt{2}}[/tex]
Tương tự: [tex]\sqrt{a-3}=\frac{1}{\sqrt{3}}.\sqrt{(a-3).3}\leq \frac{1}{\sqrt{3}}.\frac{a}{2}[/tex] [tex]\Rightarrow \frac{\sqrt{a-3}}{a}\leq \frac{1}{2\sqrt{3}}[/tex]
[tex]\sqrt{b-4}=\frac{1}{\sqrt{4}}.\sqrt{(b-4).4}\leq \frac{1}{2}.\frac{b}{2}\Rightarrow \frac{\sqrt{b-4}}{b}\leq \frac{1}{4}[/tex]
[tex]\Rightarrow A\leq \frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}[/tex]
Dấu "=" xảy ra <=> c-2=2; a-3=3; b-4=4 <=> c=4; a=6; b=8