tìm GTLN

N

naive_ichi

$3x+y=1$ \Rightarrow $y=1-3x$
Khi đó $A=-3x^2-y^2=-3x^2-(1-3x)^2=-12x^2+6x-1$
=$-3(4x^2-2x+\frac{1}{3})=-3(4x^2-2x+\frac{1}{4}+\frac{1}{12})$
=$-3(2x-\frac{1}{2})^2-\frac{1}{4}$ \leq $-\frac{1}{4}$
Dấu bằng có \Leftrightarrow $x=\frac{1}{4}$ \Leftrightarrow $y=...$
Vậy $maxA=-\frac{1}{4}$ \Leftrightarrow $x=\frac{1}{4},y=...$
 
Last edited by a moderator:
H

huynhbachkhoa23

$A=-(3x^2+y^2) \le -[\dfrac{(3x+y)^2}{4}]=\dfrac{1}{4}$

Đẳng thức xảy ra khi $x=y=\dfrac{1}{4}$
 
Top Bottom