tim GTLN

H

hthtb22

Với ab+bc+ca=1

\Rightarrow [tex]1+a^2 = a^2+ab+bc+ca =a(a+b) + c(a+b) = (a+b)(a+c)[/tex]

\Rightarrow [tex]\frac{1}{\sqrt{1+a^2}}=\frac{1}{\sqrt{(a+b)(a+c)}} \leq \frac{1}{2}(\frac{1}{a+b}+\frac{1}{a+c})[/tex]

[tex]\frac{a}{\sqrt{1+a^2}} \leq\frac{1}{2}(\frac{a}{a+b}+\frac{a}{a+c})[/tex]

[tex]\frac{b}{\sqrt{1+b^2}} \leq \frac{1}{2}(\frac{b}{b+a}+\frac{b}{b+c})[/tex]

[tex]\frac{c}{\sqrt{1+c^2}} \leq\frac{1}{2}( \frac{c}{c+a}+\frac{c}{c+b})[/tex]

Cộng vế với vế ta có

A\leq [tex]\frac{3}{2}[/tex]

Dấu = xảy ra \Leftrightarrow a=b=c=[tex]\frac{1}{\sqrt{3}}[/tex]
 
Top Bottom