Tìm GTLN va GTNN

T

tiger3323551

[tex]sin^5+\sqrt{3}cosx \le sin^4+\sqrt{3}cosx[/tex]
[tex]sin^4+\sqrt{3}cosx \le \sqrt{3}[/tex]
[tex]\sqrt{3}(1-cosx)-sin^4x \ge 0[/tex]
[tex]<=>\sqrt{3}(1-cosx)-(1-cos^2x)^2 \ge 0[/tex]
[tex]<=>(1-cosx)((\sqrt{3}-(1-cosx)(1+cos^2x)) \ge 0(3)[/tex]
Theo BDT co-si
[tex](1-cosx)(1+cosx)(1+cosx)=\frac{1}{2}(2-2cosx)(1+cosx)(1+cosx) \le \frac{1}{2}(\frac{2-2cosx+1+cosx+1+cosx}{3})^3=\frac{32}{27} <\sqrt{3}[/tex]
=>BDT(3) đúng
dấu "=" xảy ra khi [tex]cosx=1[/tex]
[tex]=>max=\sqrt{3}[/tex]
tìm min bạn làm tương tự như trên
[tex]sin^5x+\sqrt{3}cosx \ge -sin^4x+\sqrt{3}cosx[/tex]
[tex]min=-\sqrt{3}[/tex]
 
Last edited by a moderator:
P

puu

ai giúp mình bài này với




tìm GTLN và GTNN của hs y=[tex]sin^5x+\sqrt{3}cosx[/tex]
[TEX]y=sin^5x+\sqrt{3}cosx \leq sin^2x+\sqrt{3}cosx = 1-cos^2x+\sqrt{3}cosx[/TEX]
[TEX]=-(cosx-\frac{\sqrt{3}}{2})^2+7/4 \leq 7/4[/TEX]
max= 7/4
dấu = \Leftrightarrow[TEX]cosx=\frac{\sqrt{3}}{2}[/TEX]
bài này sai rồi
sr nha
 
Last edited by a moderator:
Top Bottom