Tìm GTLN và GTNN của:

A

ailatrieuphu

E

eye_smile

4,$D=\dfrac{4x^2+4x+4}{x^2+2x+1}=\dfrac{3(x^2+2x+1)+(x^2-2x+1)}{x^2+2x+1}=3+\dfrac{(x-1)^2}{(x+1)^2} \ge 3$

Dấu "=" xảy ra khi x=1
 
E

eye_smile

2,$B=\dfrac{4x+1}{4x^2+2}=\dfrac{4x^2+2+4x-4x^2-1}{4x^2+2}=1-\dfrac{4x^2-4x+1}{4x^2+2}=1-\dfrac{(2x-1)^2}{4x^2+2} \le 1$

Dấu "=" xảy ra khi $x=\dfrac{1}{2}$

$B=\dfrac{4x+1}{4x^2+2}=\dfrac{-0,5(4x^2+2)+2x^2+4x+2}{4x^2+2}=\dfrac{-1}{2}+\dfrac{2(x+1)^2}{4x^2+2} \ge \dfrac{-1}{2}$

Dấu "=" xảy ra \Leftrightarrow $x=-1$
 
E

eye_smile

$C=\dfrac{243-36x}{x^2+81}=\dfrac{-(x^2+81)+x^2-36x+324}{x^2+81}=-1+\dfrac{(x-18)^2}{x^2+81} \ge -1$

Dấu "=" xảy ra \Leftrightarrow $x=18$

$C=\dfrac{243-36x}{x^2+81}=\dfrac{4(x^2+81)-4x^2-36x-81}{x^2+81}=4-\dfrac{4x^2+36x+81}{x^2+81}=4-\dfrac{(2x+9)^2}{x^2+81} \le 4$

Dấu "=" xảy ra \Leftrightarrow $x=-9/2$
 
Top Bottom