a) $A = \dfrac{1}{2+\sqrt{4-x^2}}$
b) $B = \sqrt{-x^2+4x+5}$
c) $C = 8-\sqrt{9-x^2}$
d) $D = \dfrac{1}{3+\sqrt{2-x^2}}$
e) $E = \dfrac{2x+1}{x^2+2}$
f) $F = x+y$ biết x, y thuộc R và $x^2+y^2=1$
g) $G = \dfrac{x^2-x+1}{x^2+x+1}$
h) $H= \dfrac{3-4x}{1+x^2}$
a) ĐK: $-2\le x\le 2$
* Tìm Min:
Ta có: $\sqrt{4-x^2}\le \sqrt 4=2$
$\Rightarrow 2+\sqrt{4-x^2}\le 2+2=4$
$\Rightarrow \dfrac1{2+\sqrt{4-x^2}}\ge \dfrac14$
$\Rightarrow A\ge \dfrac14$
Dấu '=' xảy ra khi $x=0$ (TM)
Vậy $A_{min}=\dfrac14$ khi $x=0$
* Tìm Max:
Ta có: $\sqrt{4-x^2}\ge 0$
$\Rightarrow 2+\sqrt{4-x^2}\ge 2$
$\Rightarrow \dfrac1{2+\sqrt{4-x^2}}\le \dfrac12$
$\Rightarrow A\le \dfrac12$
Dấu '=' xảy ra khi $x=\pm 2$ (TM)
Vậy $A_{max}=\dfrac12$ khi $x=\pm 2$
b) ĐK: $-1\le x\le 5$
Ta có: $B = \sqrt{-x^2+4x+5}
\\=\sqrt{9-(x^2-4x+4)}
\\=\sqrt{9-(x-2)^2}\le \sqrt 9=3$
Dấu '=' xảy ra khi $x=2$
Vậy $B_{max}=3$ khi $x=2$
c) ĐK: $-3\le x\le 3$
* Tìm Min:
Ta có: $\sqrt{9-x^2}\le \sqrt 9=3$
$\Rightarrow 8-\sqrt{9-x^2}\ge 8-3=5$
$\Rightarrow C\ge 5$
Dấu '=' xảy ra khi $x=0$ (TM)
Vậy $C_{min}=5$ khi $0$
* Tìm Max:
Ta có: $\sqrt{9-x^2}\ge 0$
$\Rightarrow 8-\sqrt{9-x^2}\le 8-0=8$
$\Rightarrow C\le 8$
Dấu '=' xảy ra khi $x=\pm 3$
Vậy $C_{max}=8$ khi $x=\pm 3$
d) Tương tự câu a.
e) * Tìm Min:
Ta có:
$E = \dfrac{2x+1}{x^2+2}=\dfrac{4x+2}{2(x^2+2)}=\dfrac{(x^2+4x+4)-(x^2+2)}{2(x^2+2)}=\dfrac{(x+2)^2}{2(x^2+2)}-\dfrac12\ge \dfrac{-1}2$
Dấu '=' xảy ra khi $x=-2$
Vậy $E_{min}=\dfrac{-1}2$ khi $x=-2$
* Tìm Max:
Ta có:
$E=\dfrac{2x+1}{x^2+2}=\dfrac{(x^2+2)-(x^2-2x+1)}{x^2+2}=1-\dfrac{(x-1)^2}{x^2+2}\le 1$
Dấu '=' xảy ra khi $x=1$
Vậy $E_{max}=1$ khi $x=1$