Tự CM [tex]P=x^4+y^4+(x+y)^4=2(x^2+xy+y^2)^2[/tex]
Ta có: [tex]x^2+xy+y^2=\frac{x^2+xy+y^2}{x^2+2xy+2y^2}=\frac{(\frac{x}{y})^2+\frac{x}{y}+1}{(\frac{x}{y})^2+2\frac{x}{y}+2}[/tex]
Đặt [tex]\frac{x}{y}=bovinh[/tex]
Ta có:
[tex]\frac{(\frac{x}{y})^2+\frac{x}{y}+1}{(\frac{x}{y})^2+2\frac{x}{y}+2}=\frac{(bovinh)^2+bovinh+1}{(bovinh)^2+2.bovinh+2}\\\frac{(bovinh)^2+bovinh+1}{(bovinh)^2+2.bovinh+2}=\frac{\frac{3}{2}.((bovinh)^2+2.bovinh+2)-\frac{1}{2}(bovinh+2)^2}{(bovinh)^2+2.bovinh+2}=\frac{3}{2}-\frac{\frac{1}{2}(bovinh+2)^2}{(bovinh)^2+2.bovinh+2}\leq \frac{3}{2}\\"="\Leftrightarrow bovinh=-2\\\frac{(bovinh)^2+bovinh+1}{(bovinh)^2+2.bovinh+2}=\frac{\frac{1}{2}.((bovinh)^2+2.bovinh+2)+\frac{1}{2}.(bovinh)^2}{(bovinh)^2+2.bovinh+2}=\frac{1}{2}+\frac{\frac{1}{2}.(bovinh)^2}{(bovinh)^2+2.bovinh+2}\geq \frac{1}{2}\\ "="\Leftrightarrow bovinh=0[/tex]
Thay vô tìm dc min max rồi