tim GTLN-GTNN của hàm số

N

nguyenbahiep1

$c)y=\frac{2+cosx}{sinx+cosx+2}$

[laTEX]sinx.y + cosx.y + 2y = 2+cosx \Leftrightarrow y.sinx + (y-1)cosx = 2-2y \\ \\ y^2+(y-1)^2 \geq (2-2y)^2 \Rightarrow y \in [\frac{3-\sqrt{3}}{2} ; \frac{3+\sqrt{3}}{2}][/laTEX]
 
N

nguyenbahiep1

$a)y=cos^3x.sinx-sin^3x.cosx$

[laTEX]y = \frac{1}{4}( (cos3x+3cosx).sinx- (3sinx-sin3x).cosx) \\ \\ y = \frac{1}{4}( sinx.cos3x + cosx.sin3x) = \frac{1}{4}sin(4x) \\ \\ sin4x \in [-1;1] \Rightarrow t \in [\frac{-1}{4};\frac{1}{4}][/laTEX]
 
N

nguyenbahiep1

d)y=sin^2x+căn3/2.sin2x

[laTEX]y = \frac{1}{2} ( \sqrt{3}sin2x - cos2x + 1) = sin(2x-\frac{\pi}{6}) + \frac{1}{2} \\ \\ sin(2x-\frac{\pi}{6}) \in [-1;1] \Rightarrow y = ?[/laTEX]
 
Q

quynhsieunhan

b) $cos3x(sinx)^3 + sin3x(cosx)^3$
= $[4(cosx)^3 - 3cosx](sinx)^3 + [3sinx - 4(sinx)^3](cosx)^3$
= $3sinx(cosx)^3 - 3cosx(sinx)^3$
= $3sinxcosx[(cosx)^2 - (sinx)^2]$
= $\frac{3}{2}sin2xcos2x$
= $\frac{3}{4}sin4x$
Có: $sin4x \in \ [-1;1]$ \Rightarrow ..............
 
Top Bottom