Cho a,b,c [tex]\epsilon[/tex] R >0 và a+b+c=3
Tìm GTLN của P=[tex]\frac{ab}{c+3}+\frac{bc}{a+3}+\frac{ca}{b+3}[/tex]
Ta có:
[tex]\frac{ab}{c+3}= \frac{ab}{c+a+b+c}=\frac{ab}{\left ( c+a \right )+\left ( c+b \right )}[/tex]
[tex]= \frac{ab}{4}\times \frac{4}{\left ( c+a \right )+\left ( c+b \right )}\leq \frac{ab}{4}\times \left ( \frac{1}{c+a}+\frac{1}{c+b} \right )=\frac{ab}{4\left ( c+a \right )}+\frac{ab}{4\left ( c+b \right )}[/tex]
Tương tự:
[tex]\frac{bc}{a+3}\leq \frac{bc}{4\left ( a+b \right )}+\frac{bc}{4\left ( a+c \right )}[/tex]
[tex]\frac{ca}{b+3}\leq \frac{ca}{4\left ( b+a \right )}+\frac{ca}{4\left ( b+c \right )}[/tex]
Cộng vế theo vế 3 BĐT trên , ta được:
[tex]P\leq \frac{ab+bc}{4\left ( c+a \right )}+\frac{ab+ac}{4\left ( b+c \right )}+\frac{bc+ac}{4\left ( b+a \right )}[/tex]
[tex]= \frac{a+b+c}{4}=\frac{3}{4}[/tex]
Dấu bằng xảy ra khi a=b=c=1
Vậy P max =[tex]\frac{3}{4}[/tex] khi a=b=c=1