Đặt [tex]x=a^2;y=b^2;z=c^2[/tex] với [TEX]a,b,c>0[/TEX] thì [tex]xyz=1\Leftrightarrow (abc)^2=1\Leftrightarrow abc=1[/tex]
Khi đó [tex]E=\frac{1}{2a^2+b^2+3}+\frac{1}{2b^2+c^2+3}+\frac{1}{2c^2+a^2+3}[/tex]
Có [tex]2a^2+b^3+3=(a^2+b^2)+(a^2+1)+2\geq 2ab+2a+2\\\Rightarrow \frac{1}{2a^2+b^2+3}\leq \frac{1}{2ab+2a+2}[/tex]
Tương tự ta sẽ có được [tex]E\leq \frac{1}{2}.\left ( \frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1} \right )\\=\frac{1}{2}.\left ( \frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab} \right )\\=\frac{1}{2}.\left ( \frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab} \right )\\=\frac{1}{2}[/tex]
Dấu = xảy ra khi [TEX]a=b=c=1[/TEX] hay [TEX]x=y=z=1[/TEX]