a) A = [tex]\sqrt{3}-\sqrt{x-1}[/tex]
b) B = [tex]6\sqrt{x}-x[/tex]
c) C = [tex]\frac{1}{x-\sqrt{x}+1}[/tex]
d) D = [tex]\frac{\sqrt{x}}{x+\sqrt{x}+1}[/tex]
e) E = [tex]\sqrt{x}.\sqrt{2-x}[/tex]
f) F = [tex]\frac{\sqrt{x}-1}{x}[/tex] (ĐK x>0)
g) G = [tex]\sqrt{ab}[/tex] biết [tex]\sqrt{a}+\sqrt{b}=4[/tex]
a) ĐK: $x\ge 1$.
Ta có: $\sqrt{x-1}\ge 0\Rightarrow \sqrt 3-\sqrt{x-1}\le \sqrt 3$ hay $A\le \sqrt 3$.
Dấu '=' xảy ra khi $x=1$ (TM)
Vậy $A_{max}=\sqrt 3$ khi $x=1$.
b) ĐK: $x\ge 0$.
Ta có: $B=6\sqrt x-x=9-(x-6\sqrt x+9)=9-(\sqrt x-3)^2\le 9$.
Dấu '=' xảy ra khi $x=9$ (TM)
Vậy $B_{max}=9$ khi $x=9$.
c) ĐK: $x\ge 0$.
Ta có: $C=\dfrac1{x-\sqrt x+1}=\dfrac1{(\sqrt x-\dfrac12)^2+\dfrac 34}\le \dfrac1{\dfrac 34}=\dfrac 43$.
Dấu '=' xảy ra khi $x=\dfrac14$.
Vậy $C_{max}=\dfrac 43$ khi $x=\dfrac14$.
d) ĐK: $x\ge 0$.
Ta có: $D=\dfrac{\sqrt x}{x+\sqrt x+1}$.
+ Nếu $x=0\Rightarrow D=0$.
+ Nếu $x\ne 0\Rightarrow D=\dfrac1{\sqrt x+\dfrac1{\sqrt x}+1}$.
Áp dụng BĐT Cô si ta có:
$\sqrt x+\dfrac1{\sqrt x}\ge 2\Rightarrow \sqrt x+\dfrac1{\sqrt x}+1\ge 3$.
$\Rightarrow \dfrac1{\sqrt x+\dfrac1{\sqrt x}+1}\le \dfrac13$.
$\Rightarrow D\le \dfrac13$.
Dấu '=' xảy ra khi $x=1$ (TM)
Vậy $D_{max}=\dfrac13$ khi $x=1$.
e) ĐK: $0\le x\le 2$.
Áp dụng BĐT Cô si ta có:
$\sqrt x.\sqrt{2-x}\le \dfrac{x+2-x}2=1$.
$\Rightarrow E\le 1$.
Dấu '=' xảy ra khi $x=1$ (TM)
Vậy $E_{max}=1$ khi $x=1$.
f) ĐK: $x>0$.
Ta có:
$F=\dfrac{\sqrt x-1}x=\dfrac{4\sqrt x-4}{4x}=\dfrac{x-(x-4\sqrt x+4)}{4x}=\dfrac14-\dfrac{(\sqrt x-2)^2}{4x}\le \dfrac14$.
Dấu '=' xảy ra khi $x=4$ (TM)
Vậy $F_{min}=\dfrac14$ khi $x=4$.
g) ĐK: $a\ge 0;b\ge 0$.
Áp dụng BĐT Cô si ta có:
$\sqrt[4]{ab}\le \dfrac{\sqrt a+\sqrt b}2=2$.
$\Rightarrow \sqrt{ab}\le 4$.
$\Rightarrow G\le 4$
Dấu '=' xảy ra khi $a=b=4$
Vậy $G_{max}=4$ khi $a=b=4$