Anh nghĩ đề bài phải thêm điều kiện:[tex]x;y;z> 0[/tex]
Ta có:[tex](x+y)(x-y)^{2}\geq 0[/tex]
=>[tex](x+y).(x^{2}-2xy+y^{2})=(x+y).(x^{2}+y^{2}-xy)-(x+y).xy\geq 0[/tex]
=>[tex]x^{3}+y^{3}-xy(x+y)\geq 0[/tex]
=>[tex]x^{3}+y^{3}+1\geq xy(x+y)+1=xy(x+y+z)[/tex]
=>[tex]\frac{1}{x^{3}+y^{3}+1}\leq \frac{1}{xy(x+y+z)}[/tex]
Chứng minh tương tự ta có:[tex]\frac{1}{y^{3}+z^{3}+1}\leq \frac{1}{yz(x+y+z)}[/tex] ; [tex]\frac{1}{x^{3}+z^{3}+1}\leq \frac{1}{xz(x+y+z)}[/tex]
=>[tex]\frac{1}{x^{3}+y^{3}+1}+\frac{1}{y^{3}+z^{3}+1}+\frac{1}{x^{3}+z^{3}+1}\leq \frac{1}{xy(x+y+z)}+\frac{1}{yz(x+y+z)}+\frac{1}{xz(x+y+z)}=\frac{x+y+z}{xyz(x+y+z)}=\frac{1}{xyz}=1[/tex]
Dấu = xảy ra <=>[tex]x=y=z=1[/tex]