Đặt a+b=x
b+c=y
c+a=z
Có: 1/(x+1) +1/(y+1) +1/(z+1)=2 -> 1- 1/(x+1) + 1- 1/(y+1) + 1- 1/(z+1)=1
-> x/(x+1) + y/(y+1) +z/(z+1)=1
y/(y+1) +z/(z+1)=1- x/(x+1)=1/(x+1)
Áp dụng BDT cauchy ta có:
[tex]\frac{1}{x+1}\geq 2.\sqrt{\frac{yz}{(y+1)(z+1)}}[/tex] (1)
Tương tự CM dc
[tex]\frac{1}{y+1}\geq 2.\sqrt{\frac{xz}{(z+1)(z+1)}}[/tex] (2)
[tex]\frac{1}{z+1}\geq 2.\sqrt{\frac{yx}{(y+1)(x+1)}}[/tex] (3)
Nhân 2 vế của (1) (2) (3) được
[tex]\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1} \geq 8\sqrt{\frac{x^2y^2z^2}{(x+1)^2(y+1)^2(z+1)^2}}= 8. \frac{xyz}{(x+1)(y+1)(z+1)}[/tex]
[tex]\rightarrow 1\geq 8xyz \rightarrow xyz\leq \frac{1}{8}\rightarrow (a+b)(b+c)(c+a)\leq \frac{1}{8}[/tex]