Ta có:
[TEX]cos(\frac{x}{2})cos(\frac{x}{2^2})..cos(\frac{x}{2^n})=\frac{1}{2^nsin(\frac{x}{2^n})}2^ncos(\frac{x}{2})cos(\frac{x}{2^2})...sin( \frac{x}{2^n})cos(\frac{x}{2^n})[/TEX]
[TEX]=\frac{1}{2^nsin(\frac{x}{2})}2^{n-1}cos(\frac{x}{2})cos(\frac{x}{2^2})...cos(\frac{x}{2^{n-1}})sin(\frac{x}{2^{n-1}})[/TEX]
[TEX]=\frac{1}{2^nsin(\frac{x}{2})}2^{n-2}cos(\frac{x}{2})cos(\frac{x}{2^2})...cos(\frac{x}{2^{n-2}})sin(\frac{x}{2^{n-2}})=...=\frac{sinx}{sin(\frac{x}{2^n})}[/TEX]
[TEX]\Rightarrow lim=\infty[/TEX]