Kẹp nó lại
Ta có [tex]\frac{n!}{n^n}=\frac{1.2.3...n}{n.n.n...n}=\frac{1}{n}.\frac{2}{n}.\frac{3}{n}...\frac{n}{n}<\frac{1}{n}.\frac{n}{n}.\frac{n}{n}...\frac{n}{n}=\frac{1}{n}[/tex]
[tex]\frac{n!}{n^n}>\frac{1}{n^n}[/tex]
Mà [tex]\left\{\begin{matrix} lim\left ( \frac{1}{n} \right )=0 & \\ lim\left ( \frac{1}{n^n} \right )=0& \end{matrix}\right.\Rightarrow lim\left ( \frac{n!}{n^n} \right )=0[/tex]