1. Ta có: [tex]AN=|\frac{ct}{b-t}|=\frac{ct}{t-b}[/tex]
Vì [tex]\frac{ct}{t-b}\leq 4c\Rightarrow t\geq \frac{4b}{3}[/tex]
Lại có: [tex]AM=t \leq 4b[/tex] [tex]\Rightarrow \frac{4b}{3}\leq t\leq 4b[/tex]
2. Ta có: [tex]\frac{4b}{3}\leq t\leq 4b \Rightarrow \frac{4}{3} \leq \frac{t}{b} \leq 4[/tex]
Đặt [tex]x=\frac{t}{b}[/tex]
Ta có [tex]f(t)=\frac{ct^2}{2(t-b)}=\frac{cb^2.(\frac{t}{b})^2}{2(\frac{t}{b}-1).b}=\frac{cb.x^2}{2(x-1)}=bc.\frac{x^2}{2(x-1)}[/tex]
Ta thấy: [tex]x^2=x^2+4-4 \geq 4x-4=4(x-1) \Rightarrow f(t) \geq 2[/tex]
Lại có: [tex](x-\frac{4}{3})(x-4)\leq 0\Leftrightarrow x^2-\frac{16}{3}x+\frac{16}{3}\leq 0\Leftrightarrow x^2\leq \frac{16}{3}(x-1) \Rightarrow f(t)\leq \frac{8}{3}[/tex]