Xét với x+y+z=0, ta có:
[tex](\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})[/tex]
mà [tex]\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{x+y+z}{xyz}=0[/tex]
=>[tex](\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\Rightarrow \sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\left | \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \right |[/tex]
Áp dụng với x=1; y=k; z=-k-1:
[tex]\sqrt{1+\frac{1}{k^2}+\frac{1}{(k+1)^2}}=\sqrt{\frac{1}{1^2}+\frac{1}{k^2}+\frac{1}{(-k-1)^2}}=|\frac{1}{1}+\frac{1}{k}+\frac{1}{-k-1}|[/tex]
=>[tex]\sqrt{1+\frac{1}{k^2}+\frac{1}{(k+1)^2}}=1+\frac{1}{k}-\frac{1}{k+1}[/tex]
Thay k lần lượt 1,2,...,n ta được
[tex]Q=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{n}-\frac{1}{n+1}+\frac{101}{n+1}=n+1-\frac{1}{n+1}+\frac{101}{n+1}=n+1+\frac{100}{n+1}[/tex]
Áp dụng AM-GM:
[tex]Q=n+1+\frac{100}{n+1}\geq 2\sqrt{(n+1).\frac{100}{n+1}}=2\sqrt{100}=20[/tex]
Đẳng thức xảy ra <=> n+1=100/(n+1) => n=9
Vậy MinQ=20 khi n=9